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The pseudo-orthorhombic diffraction patterns of four of the five substances discussed by Dunitz (1964) 
are reinterpreted as being due to the OD character of the structures. In one instance [nonactin, 
(C10H1603)4] the symmetry obtained is the same as that proposed by Dunitz and twinning as well as 
disorder observed in one specimen are explained as due to the OD character. In another instance (aza- 
cyclodecane hydrobromide, C9Hz2N+Br -) the arrangement suggested by Dunitz turns out to have OD 
character; there is, however, another OD arrangement which would account for the reported systematic 
absences and symmetry of the diffraction pattern equally well. In the two remaining instances (0c-cobalt 
dipyridine dichloride, Co(CsHsN)2C12 and cycloundecylamine hydrobromide, ClIH21NH3+Br -) the 
arrangements suggested by Dunitz have no OD character and other arrangements with OD character 
which would account for the systematic absences and symmetry of the diffraction pattern are given. 
Equipoints and structure factor formulae are given for some of the examples and conclusions drawn for 
Patterson functions calculated with intensities from twinned or slightly disordered specimens. Thus it 
is shown how mistaken conclusions may be avoided and interpretable partial Patterson functions 
obtained. 

Introduction 

In a recent paper Dunitz (1964) has given an inter- 
pretation of the diffraction patterns of crystals of five 
substances obtained in his laboratory. While at least 
some crystals of each of these substances possess the 
diffraction symmetry mmm (at least for reflexions with 
h, k even), they all show pseudo-selection rules, i.e. 
systematic absences not demanded by any of the ortho- 
rhombic space groups; for examples II, III, IV and V 
in Dunitz's article, crystals giving diffraction patterns 
of monoclinic symmetry were also found. These fea- 
tures of the diffraction patterns were discussed in 
terms of twinning. In a short note (Dornberger-Schiff 
& Dunitz, 1965) we indicated that an alternative inter- 
pretation in terms of OD arrangements is just as com- 
patible with the diffraction data, besides being more 
convincing from a structural point of view. 

In the following, the interpretation in terms of OD 
arrangements is discussed in greater detail. The exam- 
ples are treated in a sequence different from that in 
Dunitz's paper. Those treated first are discussed in 
greatest detail, whence the reader should be able to 
apply similar considerations to the later examples and 
so arrive at the conclusions outlined in the paper. 

Nonactin (example IV) 

In Table l(a) the systematic absences are presented in 
a way differing from that of Dunitz (1964), but facili- 
tating their interpretation. The conditions "hOl present 
only for h = 4n' and 'Okl present only for k = 4n', which 
do not correspond to any condition demanded by an 
orthorhombic space group (or one of lower symmetry), 
are contained in Table 1 (a) as special cases of condition 
(1) together with conditions (3) and (4), respectively. 

Type of 
No. reflexion 

(1) 

(2) 

Table l(a). Summary of  systematic absences and symmetry o f  nonactin 

Conditions limiting Symmetry of 
possible reflexions reflections arrangements 

9 

l(hkl)-- I(hkl.) C 
hkl h + k = 2n I(hkl) = I(hkl) 

hkO h = 2n (k = 2n) 11 a llb 

Character of 
symmetry operation 
(referred to whole 

structure) 

Total 

Total? 
Total? 

For h = 2H (k = 2K) 

HKI 

(3) HOI H=2n 

(4) OKI K= 2n 

_.9 _ Inequality observed for certain samples 
Total? = Possibly total 

I(HKI)=I(FJKI.) 
I(HKI) = I(HKI) 

Fictitious structure with 
A = a/2, B =b/2 

lal Partial 

b 11 Partial 

A C 21 - 2* 
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It is convenient to discuss these conditions in terms 
of the total symmetry elements of a fictitious structure 
corresponding to a selection of the structure factors 
of the real structure, namely those with h (and thus k) 
even. This fictitious structure has translational periods 
a/2, b/2, c and its electron density Qfiet (x,y, z) is related 
to the electron density Q(x,y,z) of the real structure by 

Qfiet(x,y,z) = ½. [O(x,y,z) + O(x,y + {,z)] (1) 
= ½. [e(x,y,z) + O(x + ½,y,z)]. 

The symmetry of the reflexions with even indices h and 
k and the conditions (3) and (4) shows that the fictitious 
structure has one of the orthorhombic space groups, 
Pba2 or Pbam. 

The b- and a-glide planes of these space groups can- 
not, however, correspond to total symmetry operations 
of the real structure, because the glide components 
B/2=b/4 and A/2=a/4 would lead to lattice trans- 
lations b/2 and a/2 respectively, in contradiction to 
the observed lattice constants. The partial character 
of these symmetry operations is in keeping with the 
observation that I(hkl) # I(hkl) for odd values of h 
(and k), in contrast to the orthorhombic character of 
the intensities for the even reflexions. The a- and b- 
glide planes corresponding to condition (2) result in 
a mirror plane perpendicular to e of the fictitious 
structure, which accordingly has the space group Pbam 
[see Fig. l(b)]. Conditions (1) and (2) together with 
the partial operations deduced from the fictitious 
structure lead unequivocally to the symmetry given by 
Dunitz (1964). 

This symmetry is characterized by the total sym- 
metry operations, and the truly partial operations cor- 
responding* to part of the schematict arrangement of 
geometrically equivalent layers shown in Fig. l(a), 
namely layers L3 to L8. The tendency to form twins, 
which Dunitz suggested to be a property of para-ortho- 
rhombic structures, arises naturally from certain fea- 
tures of this arrangement, for although all pairs of 
consecutive layers are geometrically equivalent,:[: this 
equivalence does not suffice to determine uniquely the 
position of one layer (L~+I, say) from the position of 
the preceding layer (L~o). This property characterizes 
it as an OD structure. 

As has been pointed out before (Dornberger-Schiff, 
1964), OD structures may occur as periodic structures 
but they are frequently disordered or twinned. This 
is easily understandable from energy considerations. 

If the arrangement of atoms within a certain layer is 
energetically favourable, it will be formed again and 

* An operation is called truly partial, if the transformation 
of space characterizing it does not transform the whole struc- 
ture into itself, but only part of the structure into part of the 
structure. If an operation transforms a layer (in the sense of 
OD theory) into a layer, it is called a PO. 

t Following the example of Shubnikov and his school, 
asymmetric units are indicated in this and the following Figs. 
as triangles. 

:I: This condition forms an essential part of the so called 
vicinity condition. 

b 

c ~ .  ~ 
/-2 -...4 ~ - , ~  

2°0"°/t 
(a) 

B 

A 1 
(b) 

Fig. 1. Schematic representations related to the OD groupoid 
family 

2 P (1) 1 - -  
b 

the probable OD groupoid family of nonactin. (a) Schematic 
representation of asymmetric units of a part of a disordered 
structure. Each triangle represents an asymmetric unit. Full 
triangle, z=z0; empty triangle, z=,%. Parts of this arrange- 
ment correspond to arrangements of maximum degree of 
order: 
L~ to L3 MDOI 
L3 to L8 MDOI' (Geometrically equivalent to MDO1) 
L7 to LI1 MDOz 
(b) Arrangement of asymmetric units in the superposition 
structure. Shaded triangles, z=zo and zT0. 
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again in the structure and, if the composition of such 
a layer corresponds to the composition of the sample, 
the whole structure will consist of such layers and 
nothing else. If a certain arrangement of a pair of 
neighbouring layers is particularly favourable, it will 
occur again and again throughout the structure, and 
if the arrangement is such that it is possible to build 
a structure solely with pairs of that kind, no other 
pairs will occur in the structure. 

The nature of the most favourable layer-pair may, 
however, be such that no structure can be built solely 
with pairs of that kind. The same may be true for 
another, relatively favourable layer-pair. If a structure 
is possible in which all layer-pairs are equivalent to 
one or the other favoured arrangements, that structure 
is likely to occur. A similar statement would hold for 
triples but, because of the decrease of the interatomic 
forces with distance, the difference in interaction energy 
between layers one removed will, in some cases, not 
exclude the formation of less favourable triples, at 
least at intervals. 

Fig. l(a) gives a schematic representation of an ar- 
rangement composed of geometrically equivalent layers 
and geometrically equivalent pairs of layers, of the 
kind suggested by Dunitz. (His description actually 
corresponds to the ordered region comprising layers 
L3 to LB.) Three geometrically non-equivalent triples 
may be formed from such pairs of layers. They are 
instanced by (L3, L4, Ls), (L4, Ls, L6) and (L2, L3, L4). 
No structure containing only triples of the first kind 
or triples of the second kind is possible. 

If, therefore, triples of the third kind are less favour- 
able than those of the first and second, the formation 
of an arrangement equivalent to part L3 to L8 of Fig. 
l(a) is to be expected. It is described as being 'of maxi- 
mum degree of order' (MDOx). If on the other hand, 
the third kind of triple is more favourable, a periodic 
arrangement equivalent to part L7 to Ln [Fig. l(a)] 
will be formed. This is also of maximum degree of 
order (MDO2). If, however, the difference in the energy 
of interaction between the various triples is not too 
great, ordered regions corresponding to one or the 
other MDO arrangement are expected to occur with 
occasional mistakes. Part LI to L8 [Fig. l(a)] shows 
how such a mistake would lead to the formation of a 
twin, with layer L3 common to the two twin individuals. 

The symmetry of the family of structures consisting 
of the same kind of layers as well as pairs of layers 
as in nonactin is thus given by the following symbol 
of the OD groupoid family (giving the plane space 
group of the single layer in the first and the a-PO's* 
in the second line): 

* o--PO's are defined as partial operations that transform 
one layer into an adjacent layer. 2-PO's are defined as partial 
operations that transform one layer into itself. There exist a 
multitude of PO's that are neither 2- nor a-PO's, but transform 
a layer into a non-adjacent layer. Since any PO may be obtained 
as a product of o'-PO's, the set of a-PO's suffices to characterize 
the groupoid of PO's. 

2 
P (1) 1 -~ 

(2) 
a--; 

This expression characterizes a whole family of arrange- 
ments, some of which are periodic, others twinned (see 
above) and others more thoroughly disordered. The 
whole arrangement of Fig. l(a) may be taken as an 
example of a disordered member of this family. 

Some data referring to this OD groupoid family are 
collected in Table l(b). Only the b-glide plane remains 
as a total symmetry operation for the whole disordered 
arrangement, whereas all other PO's are truly partial, 
even those corresponding to a total operation of one 
or other of the MDO arrangements. 

Table l(b). Space groups of  MDO arrangements and 
superposition structure for OD groupoid family (2) 

and systematic absences 

MDOx 

MDO2 
Superposition 
structure 

~'kl 
~'ko 

For  k = 2K 

~'k/ 

Space group Basic vectors* 
2 

e l l  ~- ½(a+b), b, e 

P21ab ½a, b, e 

Pbam ½a, ½b, e 

Possible reflexions 
All 
k=2n 

~'=h=2H 
Conditions of Pbam 

(superposition structure) 
* Referred to basic vectors a, b, c of  rec tangular  cell. 

The total character of the b-glide plane results from 
the special value s = 0 of one of the parameters of the 
OD groupoid family 

2 
P (1) 1 --~ 

21 2r 1} 
n8,2 

obtained from the family 
2 

P 1 - -  (1) 
a 

(3) 

(4) 

n8,2 

given in the table of OD groupoid families (Dornber- 
ger-Schiff, 1964, p.88) by cyclic change of axes. This 
special value leads to a reduction from 4 to 2 for the 
number of positions of a layer compatible with the 
vicinity condition. 

The fictitious arrangement described above and 
shown in Fig. l(b) turns out to be the superposition 
structure corresponding to the OD arrangement of 
Fig. l(a), The superposition structure of an OD at- 
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rangement is defined (Dornberger-Schiff, 1964, p. 54) 
as the periodic arrangement arrived at after a certain 
number of steps in the following way: Starting off from 
a given layer Lt all the Z different positions of the 
next layer Lz leading to the given kind of pair are 
considered as being realized with weights 1/Z each; 
starting from these positions of Lz the Z z positions 
(of which some may coincide) of the next layer Z 3 are 
considered as being realized with weights 1/Z z each, 
and so on. Hence different members of the same family 
of OD arrangements have the same superposition 
structure. In our case, Z = 2  and pairs of the 2 z posi- 
tions of L3 coincide. 

As we shall see later, the notion of the superposition 
structure is very helpful for the interpretation of dif- 
fraction patterns obtained from OD structures. 

Because in our case the fictitious structure is identical 
with the superposition structure, the intensities of the 
reflexions with k = 2 K  do not depend on the disorder 
or twinning of the particular sample but are the same 
for all members of the family. They correspond to the 
superposition structure, and, because this is periodic, 
reflexions with k = 2 K  occur only for integral values 
of ~' =h  = 2 H  [sharp reflexions; see Table l(b)]. 

The orthorhombic space group of the superposition 
structure given in this table leads to the orthorhombic 
symmetry of the corresponding reflexions (with h, k 
even) and to the corresponding systematic absences. 

For many purposes it is convenient to deduce prop- 
erties - e.g. of the Fourier transform - common to 
all members of the family and specialize for the member 
of interest afterwards. 

Naturally there will be certain parameters (called 
as in the following) which will have different values 
for different members of the OD groupoid family. The 
Fourier transform is obtained from the equipoints 
given in Table l(c): 

F(~kl) = 
1 ~ - 1  

- Z" exp (2rriZm~). [ ( -  1)n2mlc Fo(~kl) + 
2Mao m=o 

i ~ exp (2zrig")(- 1)~zm+XeFo(~/~/)] (5) 
where ~=~' /4  and 

F0(~k/) = ( -  1)~Fo(~kl)= Fo(([d) (6) 

Table 1(c). gquipoints of  a structure 
belonging to the OD groupoid family(2) 

0)+ 
x, y, z; x, ½+y, z7.; 
x, y, z; -~, ½--y, z; 

( 0~2m+l 1 ) 
2 m + l , - - - - ~ -  + -~--,0 + 

x, )7, z; x, ½ - y ,  ~; 
~, Y, ~; .~, ½ + y, z. 

The x coordinates are referred to a unit vector 
ao = A / 2  = a /4  . 
~n=0  or 1 , 

is the Fourier transform of layer L0, whereas e n = 0  
or 1, and 2M denotes the number of layers in the struc- 
ture. For k = 2K the Fourier transform F(~kl) becomes 
zero unless 2~ = H where H is an integral number, and 
for F(H, K, l) systematic absences characteristic for the 
space group Pbam of the superposition structure hold. 

For k = 2n + 1 we obtain the expression 

1 [So(~)Fo(~kl)+exp (2rci~)izcSx(~) F0(~/~l)] r(~k/) = a~- 

(7) 
with 

1 M--1 
Su(~)= - -  Z" ( -  1)~2m+u exp(2zri2m~); 

2M m=0 
/x=0or  1. (8) 

Thus the coefficients S u do not depend on 1. 
From the values of ct2,,+ u listed in Table l(d) for 

the MDO arrangements the corresponding formulae 
for such single crystals can easily be obtained. More 
important still, values for the Fourier transform at 
those places in reciprocal space where intensities dif- 
ferent from zero have actually been observed may 
be obtained without making any assumption concern- 
ing the disordered, twinned or untwinned nature of 
the structure. Thus for 4~ = ~' = h with h + k = 2n and 
k = 2 n + l  ( h = 2 n + l )  

F(hkl) = SoFo(hkl) + ( -  1)("+k)/2S1Vo(hfcl ) (9) 

where S u are constant real numbers and 

Fo(hkl)= 1 Fo(~kl) for 4~=h .  (10) 
ao 

Table l(d). Values of  en for the various arrangements 
of  maximum degree of  order 

~2m ~2m+1 a Space group 

MDO1 e0 + m e0 + m 4a0 C 112/b 
MDOI '  ~0+m ~ 0 + m + l  4a0 C l l 2 / b  
MDO2 e0 ~o + 1 2a0 P21ab  
MDO2' ~to Cto 2ao P 2 t a b  

Only for single crystals can So=S1 =21 be assumed, 
whereas in general S u <½ and S0¢ $1. Thus structure 
factors calculated for the single crystal will, naturally, 
not agree with those observed for the twinned crystal, 
even if atomic coordinates are correct. Relation (9) is 
important because it enables us to take account of the 
different weights by splitting the Fourier- and Patterson 
series accordingly: a Patterson function calculated with 
the intensities observed from such a twinned crystal 
will contain peaks with three different weights corre- 
sponding to the relations (11) and (12): 

IF(hkl)l z = S?~Fo(hkl)2 
+ S~Fo(hkl) z + 2 ( -  1)Ch+k)/2SoS1Fo(hkl)Fo(h[c.l ) 

for k = 2 n + l ;  (11) 
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IF(HKt)I2= ¼Fo(HKt)' 
+ ¼Fo(HKI) 2 + ½( - 1)u + r.Fo (HKI) Fo(HKI) 

for k = 2 K  and h = 2 H .  (12) 

Patterson peaks corresponding to interatomic vectors 
within layer L0 occur with weight ¼ + S 2, those corre- 
sponding to interatomic vectors within L1 occur with 
weight ¼+ S 2 and those connecting an atom of layer 
L0 to one of layer LI (or the other way round) occur 
with weights ¼ + SoSI each. As in the procedure adopted 
in the case of strontium metavanadate (Sedlacek & 
Dornberger-Schiff, 1965), the intensities of reflexions 
with k = 2K could be used separately from those with 
k = 2n + 1 and three partial Patterson functions would 
be obtained. 

Function (i) with coefficients IF(HKI)I 2 corresponds 
to the fictitious structure. 

Function (ii) with coefficients IF(hkl)12+ IF(hkI)l 2, 
k = 2n + 1 contains only those peaks corresponding to 
intra-layer vectors, i.e. vectors within L0 and within 
L1, but with an anti-translation of b/2 which produces 
a negative trough at (u, v + ½,w) for each positive maxi- 
mum at (u, v, w). 

These two partial Patterson functions will appear 
with a constant weight each, but these weights will, 
in general, be different from one another. 

Function (iii) with coefficients IF(hkl)l 2 -  IF(hkl)[ 2, 
k = 2 n  + 1 contains peaks corresponding to both 
intra-layer and inter-layer vectors. These two kinds of 
peak will appear with different weights; the intra-layer 
peaks referring to layer L1 will occur with negative 
sign, and, moreover, the anti-translation b/2 will pro- 
duce additional peaks with negative height from the 
positive peaks and vice versa. The use of the intensities 
of certain subsets of reflexions and/or of linear com- 
binations of them for the calculation of partial Patter- 
son and electron density functions has previously been 
suggested by Buerger (1957), and seems particularly 
useful in the case of OD structures because the inter- 
pretation of such partial functions can, in this case, 
be deduced from the knowledge of the OD groupoid 
family. 

For nonactin it was not possible from the published 
data to decide whether the layers are periodic in di- 
rections b and e (as drawn) or in directions a and e 
(a and b axes of Fig. l(a) and (b) interchanged). An 
(hkl) Weissenberg photograph* taken in this Institute 
makes this decision easy: it shows diffuse streaks paral- 
lel to a for odd k, as expected for a disordered member 
of the OD groupoid family given above. Maxima on 
the streaks correspond in position to the reflexions 
observed by Dunitz, i.e. the disordered crystal contains 
ordered regions corresponding to the MDO~ arrange- 
ment. The systematic absences for such an arrangement 
are given in Table l(b). 

A sample corresponding to the other ordered ar- 
rangement (MDO2) would also have made the distinc- 

* My thanks are due to Prof.J.D.Dunitz for sending a 
sample of nonactin. 

tion easy: lattice constants and space group absences 
differ for the two orientations [see Table 1 (b)]. Pseudo- 
selection rules corresponding to the glide planes of the 
superposition structure are again to be expected. 

It may appear that this treatment of the structure 
of nonactin is not essentially different from that given 
by Dunitz. The equipoints are actually the same for 
both interpretations. These interpretations differ, how- 
ever, in essential points and for other similar examples 
they may lead to different equipoints (see below). 

The procedure used by Dunitz is as follows: Take 
those systematic absences which might be taken as 
space group absences and derive the space group from 
them. Additional systematic absences have to be re- 
garded as arising from additional relations between 
parts of the asymmetric unit within the space group. 
An example of such additional relations is the equi- 
valence in projection which he deduced for nonactin 
and also for s-cobalt dipyridine dichloride. This equi- 
valence 'is not a space-group requirement' (Dunitz, 
1957). This is certainly true, but it will most probably 
have its cause in an equivalence of parts of the arrange- 
ment in space, which - not being a space-group require- 
ment - must be brought about by partial symmetry 
operations. Dunitz's method of treating this phenome- 
non may be misinterpreted by regarding the space 
group as a kind of vessel given in advance, into which 
the molecules are put. 

According to our interpretation, symmetry opera- 
tions relating adjacent molecules arise primarily from 
the energies of interaction between such molecules in 
different relative positions. Molecules that are them- 
selves not highly symmetric will certainly be arranged 
in such a way that one particular molecule (Fig. l(a), 
molecule A, say) has neighbouring molecules (A', B, 
C, D) in different directions forming geometrically non- 
equivalent pairs with it (molecule A' being immediately 
above A, and translationally equivalent to it). Some 
of these pairs will lead to a periodicity of the structure 
because the neighbouring molecule is apt to attach a 
further molecule in a similar way, and so on, whereas 
other pairs may not lead to such a periodicity. Thus 
e.g. the translational equivalence of molecule A and 
molecule A' immediately above it leads to a rod of 
molecules parallel to c. The pair A, B related by a 
glide plane leads - by continuation of this glide plane - 
to rods parallel to b, and this, together with the A, A' 
type of interaction, produces a layer of molecules, 
periodic in the b and e directions. 

Let us now assume that this kind of layer is energeti- 
cally so favourable that layers geometrically equivalent 
to it will be formed again and again in the structure. 
The relative positions of layers of this kind will also 
be governed by the energies of interaction and, because 
of the decline of forces with distance, the relative posi- 
tion of pairs of adjacent layers will be most decisive. 
First of all, we should expect the individual layers of 
such a pair to have the same translations, because any 
other arrangement is likely to be energetically less 
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favourable (part fl0 of the vicinity condition,* Dorn- 
berger-Schiff, 1964, p.30). Amongst the families with 
the plane space group number 13 listed in the Table 
of OD groupoid families (Dornberger-Schiff, 1964, p. 
88) there are only two not requiring a square or hex- 
agonal net. Their symbols (after appropriate inter- 
change of axes) are 

2 
P (1) 1 - -  

b 

{(1) 1 - ~ }  
(13) 

and 
2 

P (1) 1 - -  
b 

2r (14) 

n8,2 

These OD groupoid families differ in their OD sys- 
temst :  For (13) it is monoclinic II, for (14) ortho- 
rhombic. If the arrangement (13) were realized with 
s=O or 1, the structure would be fully ordered (space 
group P 112/b or B112/b respectively). Similarly, if(14) 
were realized with r = 0 or 1 and s = 0 or 1, the structure 
would be fully ordered (space group Pbab, Pmab, 
Pmnb or Pcnb respectively). 

Actually, as we have seen above, the OD groupoid 
family (14) is realized with r=S~ and s=O. The pseudo- 

* Condition fl0 could be weakened to fix requiring only a 
subgroup of the group of translations to be common to ad- 
jacent layers. But only if this subgroup contains an appreciable 
part of the elements of the group (e.g. half of them) could an 
arrangement in agreement with/71 compete energetically with 
the most favourable arrangement for which fl0 holds. The lat- 
tice constants b and c in this example do not permit a relative 
arrangement with a subgroup containing more than 5 % of the 
full translational group, unless fl0 holds. 

"t" The OD system of an OD arrangement is defined (Dorn- 
berger-Schiff, 1964, p.47) as the system of the point group 
corresponding to the transformations of space of the 2- and 
a-PO's. 

orthorhombic and para-orthorhombic character* of 
the arrangement arises from the orthorhombic nature 
of the OD system. 

The para-orthorhombic character of the examples 
I, III, and V of Dunitz can be discussed in a similar 
way. The same holds for other structures with ortho- 
rhombic OD system, e.g. decaborane, (Kasper, Lucht 
& Harker, 1950), strontium metavanadate (Sedlacek & 
Dornberger-Schiff, 1965), Kurroll 's salt form A (Jost, 
1961), the asbestos-like form of sulphur trioxide (West- 
rick & MacGillavry, 1954), petalite (Zemann-Hedlik & 
Zemann, 1955) and orpiment (Ito, 1950). 

a-Cobalt dipyridine dichloride (example V) 

As already pointed out, the symmetry derived by Du- 
nitz for nonactin can actually be described as an MDO 
arrangement of an OD groupoid family, namely family 
(2) (see above); this is not the case for e-cobalt dipyri- 
dine dichloride. Treated by Dunitz in a way similar 
to his treatment of  nonactin, it does not lead to an 
OD arrangement. The systematic absences (Dunitz 
1957, 1964) and the symmetry of intensities [Table 2(a)] 
would, however, be in keeping with an MDO arrange- 
ment of OD groupoid family (3) for r = ~  and s # 0 .  
The arrangement suggested by Dunitz consists of two 
different kinds of layer (L2n and Lzn+l) geometrically 
equivalent in projection only (see Fig. 2). They consist 
of geometrically equivalent rods parallel to b, arranged 
so that pairs of adjacent rods within a layer L2n are 
geometrically non-equivalent to a pair within Lzn+~. 
This non-equivalence of pairs of adjacent rods is not 
to be expected from considerations of their energy of 
interaction, and because of this non-equivalence, the 
arrangement cannot be regarded as an OD structure 
built of equivalent rods. 

* According to Dunitz (1964), arrangements are called para- 
orthorhombic for which 'certain regularly chosen subsets of 
reflexions exhibit perfect mmm symmetry'. The reflexions cor- 
responding to the fictitious structure belong, in this case, to 
the regularly chosen subset. 

Table 2(a). Summary o f  conditions limiting possible reflexions and symmetry o f  e-cobalt dipyridine dichloride 

Type of 
No. reflection Possible reflexions 

(1) hkl h + k = 2n 

(2) hkO h = 2n (k = 2n) 

For h = 2H (k = 2K) 

HKI All 

(3) H00 H=2n 

(4) 0K0 K= 2n 

Symmetry of 
reflexions arrangements 

1(hkl)=I(hkl) C 
I ( hkl) = I ( hki) 

11a 
llb 

Character of 
symmetry operations 

(referred to whole 
structure) 

Total? 
Total? 

I ( HKI) = I ( HKl) 
I(HKl) = I(HKI) 

Fictitious structure with 
n = a/2, B = b/2 

2111 Partial 

12x 1 Partial 
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The OD arrangement we propose consists of equi- 
valent layers. Both arrangements - that proposed by 
Dunitz and that proposed here - have in common that 
they are of monoclinic symmetry with a rectangular 
C-centred unit cell. The apparent orthorhombic sym- 
metry of the intensities of the reflexions of most crystals 
investigated has been explained by Dunitz as due to 
twinning. Such twinning is not readily explainable, 
however, on the basis of the arrangement suggested 
by Dunitz, but it is to be expected for an MDO arrange- 
ment of OD groupoid family (3)" For any position of 
layer L~ there are four positions of Lp+l leading to 
geometrically equivalent pairs (L~o, L~+I). They result 
from the a -PO's  given in the symbol for r =  + ½ and 
s = + So. Thus the equipoints of Table 2(b) are obtained. 
Five non-equivalent MDO's  are possible. They are 
given in Table 2(c) with their parameters cq, flj, lattice 
constant a, space groups and - in the last column - 
the minimum Laue symmetry which intensities at those 
places of reciprocal space corresponding to these lattice 
constants must have, irrespective of the degree of twin- 
ning or disorder. It holds, in particular, for twinned 
material containing ordered regions corresponding to 
the particular MDO. The arrangement MDO3 corre- 

b 

ao I 

P j 
Fig. 2. Schematic representation of asymmetric units in cobalt 

dipyridine dichloride. Black triangles, z=z0; empty heavy 
lined triangles, z=~0; shaded triangles, z = A + z l ;  dotted 
triangles, z = A - Z l .  Assumption of Dunitz, A=0; z l#zo .  
Assumption this paper A # 0; zl = z0. 

sponds to the observed lattice constants and C-centr- 
ing of the unit cell. It is in accordance with the system- 
atic absences listed in Table 2(a), although the con- 
ditions characteristic for a- and b-glide planes are 
observed for all hkO reflexions and thus could be space 
group operations (as assumed by Dunitz). These ob- 
served conditions result, however, from the 2-b-glide, 
which, in this case, is not a total operation. Thus the 
conditions themselves are equally compatible with glide 
planes common to the whole structure or with glide 
planes with the same translational components, but at 
different levels for different parts of the structure. 

If the parameter s is the ratio of integral numbers 
s = R / Q ,  there exists a superposition structure identical 
with a fictitious structure, with lattice constants A = 
2a0, B = b / 2 ,  C = c / Q ,  if R and Q are relative prime; 
its space group is Pbam or Pnnm,  if R = 2n or 2n + 1, 
respectively. The corresponding subset of reflexions 
will show orthorhombic symmetry and the absences 
corresponding to the respective space group. Of this 
subset with l =  Q. L only the reflexions with l =  0 would 
be observable, provided Q is fairly large. For l = 0  the 
corresponding rules are H00, H =  2n and 0K0, K =  2n, 
as observed. 

Although there seem to be some arguments in favour 
of the OD interpretation of this structure, a definite 
proof (or otherwise) requires further experimental evi- 
dence. 

Table 2(b). Equipoints o f  a structure 

belonging to the f a m i l y  (3) with r =  1/2 

2m, g ' ,82mS + 

x, y, z; x, ½+y, ~; 
x, y, z; .~, ½--y, z; 

2re+l, ~ + --~-, ,82re+is+ 

x, .17, z; x, ½-y, i; 
:~, y, :~; ~, ½-I-y, z. 

The x coordinates are referred to a unit vector 
ao = A/2 = a/4 . 
~n, ,sn integral numbers, 
,sv - ,sv-1 =0 or ( -  1)" . 

MDO1 

MDO2 

MDO3 

MDO4 

MDO5 

Table 2(c). Parameters  o f  MDO arrangements,  their lattice constants a 
and space groups f o r  the OD groupoid f a m i l y  proposed fo r  cobalt dipyridine dichloride 

Minimum Laue symmetry 
Space of intensities of 

O~2m+v fl2m ,82m+1 a group twinned material 

~v fl0 fll 2a0 P2111 { kk=2n2n+ 1 ill2/m 

O~v flo+em fll +em 2ao+rc Pla l  i 

~v + m /3o ,81 4a0 C112 112/m 

~v + m flo + em fli + em 4a0 +2re Ci i 

~v +m p0 +e/2[1- ( -  1) m] fll 4a0 Pl l2 /a  l12/m 

e = + l  
Lattice constants b and e equal to basic translations within the layer, inter-layer vector a0 perpendicular to b and e. 
Note added in proof: - For MDOz and MDO4 the value of ,81=,80-(1-0/2. 
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Azaeyclodeeane hydrobromide (example I l l )  

Table 3(a) contains the systematic absences and sym- 
metry in a way corresponding to Table l(a). Other 
systematic absences quoted by Dunitz (1964) are special 
cases of those listed. 

The arrangement proposed by Dunitz and schemati- 
cally shown in Fig. 3(a) would, if twinned, lead exactly 
to the absences and symmetry of intensities given in 
Table 3(a). For an untwinned crystal with such a sym- 
metry either the reflexions hkl  with h + k + 21 = 4n + 2 
or those with h -  k + 21 = 4n + 2 would be missing be- 

a + b  c a - b  
cause of the translational vector ~ + y o r ~  + 

e 
~- .  For all samples under investigation both these 

kinds of reflexion (h odd) were observed; thus all these 
samples are to be explained as twins. 

The untwinned arrangement is - by arguments simi- 
lar to those for the examples discussed above - an OD 
arrangement of maximum degree of order (MDO) with 
equivalent layers, pairs of layers and triples of layers. 
There exists, however, another arrangement consisting 
of equivalent layers of different symmetry, leading to 
the same systematic absences and symmetry of inten- 
sities, which also has to be regarded as an MDO ar- 
rangement [Fig.4(a)]. This arrangement possesses the 
same total operations and the same truly partial a -  

PO's and 2- r -PO's  but different 2-~--PO's, namely 
a c-glide plane instead of an n-glide plane. It  is 
remarkable that an n-glide corresponding to the 
~,~[n] of Fig.3 exists, but this is not a 2-PO but a 
:o-1,~9+1[n]. Similarly a c-glide exists in the arrangement 
of Fig.3 corresponding to the :o,~[c] of Fig.4, but 
this is a ~-1,~+~[c]. This relation between the 2-Q--PO's 
of one arrangement and :o-l,~o+l[Q]-PO's of the other 
arrangement explains why the two cases cannot be distin- 
guished by the systematic absences. The superposition 
structures of the cases shown in Figs. 4 and 3 do not 
differ [see Fig. 3(c)]. Thus, as long as only the ordered 
MDO1 arrangement is realized, there is no difference in 
principle between the two cases discussed. They differ 
only by the assignment of atoms to one particular 
layer. If, however, twins are formed, the boundary layer 
would possess the plane space group P(n)cb in the 
first case, P(c)cb in the second case. The disordered 
arrangements would lead to different systematic ab- 
sences [Table 3(b)] and the MDO2 arrangements would 
be of different symmetry [Figs. 3(b) and 4(b)]. 

Again, the symmetry of the reflexions and the syste- 
matic absences observed are symmetrical in h and k, so 
that there are two more cases to be considered, obtained 
from those discussed already by interchanging the a 
and b axes. 

The three examples (nonactin, a-cobalt dipyridine 
dichloride and azacyclodecane hydrobromide) dis- 
cussed so far have the following features in common. 

Table 3(a). Summary o f  systematic absences 

No. 

(1) 

(2) hkO h=2n (k =2n) l la  Total? 
11 b Total? 

(3) hOl l= 2n 1 cl Total? 

(4) Okl 1 = 2n cl 1 Total? 

Superposition structure with For h = 2H (k = 2K) A = a/2, B = b/2 

(5) HKl H+ K+ l = 2n I(hkl) = I(hkl) 1 Partial 

and symmetry o f  azacyclodecane hydrobromide 

Conditions Character of 
limiting symmetry operation 

Type of possible Symmetry of (referred to whole 
reflexion reflexions reflexions arrangements structure) 

hkl h + k = 2n I(hkl) ~ I(hkl) 
I(hkl) = I(hki) C Total 

Table 3(b). OD groupoid families and space groups o f  MDO arrangements and superposition structure compatible 

with the obser~,ations reported for azacyclodecane hydrobromide and possible reflexions 
for  the corresponding disordered structures 

Lattice constants and 
space group of Possible 

superposition reflexions for the 
OD groupoid family MDO1 MDO2 structure disordered structures 

P (n) c b ½(a+b), b, e a/2, b, e a/2, b/2, c (~kl) All 
{(bl/2) a2 n2,1/2} Pll2/b Pnab lccm (COl) l=2n (Okl) 

(~kO) k = 2n 

P (c) c b ½(a +b), b, e a/2, b, e a/2, b/2, e (~kl) All (Okl) 
{(bl/2) a2 n2.1/2} Pll2/b Pcab Iccm (~0l) l=2n 

(¢kO) k=2n 

k+l=2n 

l=2n 
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(a) 

(b) 

b/2 

2a0 

(c) 

Fig.3. Schematic representations related to the OD groupoid 
family 

P (n) c b 
{(bi-/'2) a2 n2,1/2}, 

one of the OD groupoid families with an arrangement of 
maximum degree of order (MDO1) compatible with the ob- 
served systematic absences and symmetry of intensities of 
azacyclodecane hydrobromide. (a) Schematic representa- 
tions of asymmetric units of the arrangement MDO1. Black 
triangles, z=zo; empty heavy lined triangles, z=:?o; shaded 
triangles, z=½+z0;  empty light lined triangles, z=½-zo. 
(b) Schematic representation of asymmetric units of MDO2. 
(c) Schematic representation of superposition structure. 
Heavily shaded triangles, z=  +z0; light shaded triangles, 
Z = ½ + 2 0  . 

There exist systematic absences which, referred to the 
cell a, b, c, do not correspond to any space-group re- 
quirements but are seen to correspond to symmetry 
elements of a fictitious structure with a subceU A =  
a/2, B=b/2 ,  C = e .  These symmetry elements corre- 
spond to partial symmetry operations of the actual 
structure. 

The twinning - if it occurs - is a twinning in Buer- 
ger's sense, i.e. the twin individuals have a layer - the 
boundary layer - in common. This twinning is pos- 
sible because of the OD character (Holser, 1958; Dorn- 
berger-Schiff, 1959, 1961). In two of the three cases 
(nonactin and azacyclodecane hydrobromide) the fic- 
titious structure referred to above is identical with the 
superposition structure, which possesses an ortho- 
rhombic space group. Therefore intensities ofreflexions 
with h = 2H, k = 2K show orthorhombic symmetry and 
are independent of the state of twinning or disorder 
of the sample - in contrast to other reflexions. 

(a) 

(~) 

Fig.4. Schematic representations related to the OD groupoid 
family 

P (c) c b 
{(bi~-2) a2 n2.1/2} 

one of the OD groupoid families with an arrangement of 
maximum degree of order (MDO1) compatible with the 
observed systematic absences and symmetry of intensities 
of azacyclodecane hydrobromide. (a) and (b) correspond 
to (a) and (b) in Fig. 3. 
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1-Anilino-4-chloropyromellitic acid diphenylimide 
(example I) 

As Dunitz has shown, no orthorhombic arrangement 
of 8 identical molecules will account for the apparent 
orthorhombic symmetry of the intensities and the 
systematic absences listed in Table 4(a). He therefore 
suggested the monoclinic arrangement shown in Fig. 
5(a), which indeed would account for the observed 
conditions, if twinned with [001] or [010] as twin axis 
or (010) or (100) as twin plane. 

In contrast to the three examples discussed above, 
the arrangement shown in Fig. 5(a) has no OD character 
and, accordingly, no twinning with a common bound- 
ary layer is possible [see Fig. 5(b)], unless the untwinned 
arrangement possesses additional, non-space-group, 
partial operations. Without such additional partial 
operations it would still be possible to envisage a struc- 
ture consisting of two periodic parts having a boundary 
layer in common, both with space group B l l b  and 
with unit cells in twinning position [Fig. 5(c)]. These 
two parts would, however, not be geometrically equi- 
valent. A structure built of such parts in 'pseudo twin- 
ning' positions - if it occurred at all - would not even 
show statistical orthorhombic symmetry of the inten- 
sities, and the reflexions with k even, whose intensities 
are independent of twinning, would also have only 
monoclinic symmetry [Fig. 5(d)]. 

This arrangement is therefore not in agreement with 
observed facts and has to be rejected. If extended 
regions MDO1 [shown schematically in Figs. 6(a) and 
7(a)] of one of the OD groupoid families listed in 
Table 4(b) were present, the observed systematic ab- 
sences and symmetry of the intensities corresponding 
to the superposition structure would result. The ortho- 
rhombic symmetry of the other reflexions could be due 
to statistical distribution of the twin individuals. Apart  
from those obtained from these families by an inter- 
change of the a- and b-axes, they are the only OD 
groupoid families (assuming equivalent layers) in 
agreement with the obseved facts. 

Cycloundeeylamine hydrobromide (Example II) 

The systematic absences are similar to those of the 
examples discussed so far. One crystal was found, how- 
ever, ' that displayed a clear breakdown of orthorhom- 
bic symmetry'.  Reflexions hkl and hkl with even h and 
k are of almost equal intensity. According to Dunitz 
(1965) it is not established whether the slight differences 
between them are due to absorption (or similar causes) 
or to monoclinic symmetry of the light atom positions. 

It is therefore not possible, on the basis of facts 
known at present, to decide whether the structure is 
likely to be an OD structure of equivalent layers or 
one of two different kinds of layer. Further discussion 
of this example is therefore postponed. 

No. 
(1) 

(2) 

Table 4(a). Summary of  systematic absences and symmetry of  1-anilino-4-chloropyromellitic acid diphenylimide 

Character of 
Conditions symmetry 

limiting operation 
Type of possible Symmetry of (referred to whole 
re flexion reflections arrangement structure) 

hkl h + k = 2n C Total? 

(3) 

hkO h = 2n (k = 2n) 11 a Total? 
1 lb Total? 

For h = 2H (k = 2K) 

HKl H+ K+ l= 2n I 

No deviations of observed intensities from orthorhombid symmetry reported. 

Superposition 
structure with 
A = a/2, B = b/2 

Partial 

Table 4(b). OD groupoid families and space groups o f  MDO arrangements and superposition structures compatible 
with the observations reported for 1-anilino-4-chloropyromellitic acid 

diphenylimide and possible reflexions for the disordered structures 

OD groupoid family 

P (2) m b 
{(22) nl,2 n2,1/2} 

P (m) 21 b 
((rtl/2,1) 2]~ n2,]7-2 } 

Lattice constants and space groups of Possible reflexions 
superposition for the disordered 

MDO1 MDO2 structure structures 

½(a+b), b, c a/2, b, e a/2, b/2, e 

Bllb P21nb I2mm I 

l B1 lb Pm21b Im2m 

(Okl) All 

(~kl) All 
(~KO) k=2n 

for k = 2K 
~=h=ZH 
(HKI) H+ K+ l = 2n 
(HOl) (H+ l=2n) 
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Conclusions 

In the interpretat ion of  pseudo-or thorhombic struc- 
tures as OD structures the pseudo-or thorhombic char- 
acter is seen to be no chance product  but  rather a 
consequence of  part ial  operations essential for the 
stability of  the structure. The OD interpretat ion there- 
fore provides a better understanding of the physical 
basis of  the occurrence of  this phenomenon.  It also 
explains how para-or thorhombic  character is brought  
about  in the case of OD arrangements  of  equivalent 
layers. The tendency to form twins or more thoroughly 
disordered arrangements  also follows from their OD 
character. 

" ~  ~ 1  
(a) 

.7 ., ,7 
(b) 

I T  

(c) (d) 

In arrangements  of  equivalent layers that  do not  
correspond to single crystals, certain sets of  layers scat- 
ter out of  phase for certain sets of  reflexions and in 
phase for others. This may  give rise to serious errors, 
i f  not properly allowed for. The considerations pre- 
sented here should act as a warning against such errors 
and point  the way to the opt imal  use of  the experi- 
mental  data in solving the crystal structure. 

My special thanks are due to Prof. J. D. Duni tz  for 
extended discussions on the subject, in the course of 
which he suggested that  I should write this paper, and 
which actually continued until  the last formulat ion of  
the paper. He also very kindly put  crystals and X-ray 
diagrams at my disposal. I gratefully acknowledge 
many  discussions with coworkers of  this Institute and 
with Ing. S. Durovic  (Bratislava), which helped to im- 
prove the presentation of the subject matter. 
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Structure of Leurocristine Methiodide Dihydrate by Anomalous Scattering Methods; 
Relation to Leurocristine* (Vincristine) and Vincaleukoblastine (Vinblastine) 

BY J. WILLIAM MONCRtEFt AND WILLIAM N. LIPSCOMB 
Department of  Chemistry, Harvard University, Cambridge, Massachusetts 02138, U.S.A. 

(Received 31 December 1965) 

The complete molecular structure including the stereochemistry and the absolute configuration of 
leurocristine methiodide dihydrate, (C47H59010N4+)I - . 2H20, has been determined by the combination 
of two crystallographic methods based on the anomalous scattering of X-rays. The structures of the 
antileukemia agent leurocristine (Vincristine) and the oncolytic alkaloid vincaleukoblastine (Vin- 
blastine) are, therefore, established. 

The crystals used in the study were monoclinic in space group P21 with two molecules in the unit 
cell of dimensions a = 10.96 + 0.05, b = 21-89 + 0.05, c = 12.68 + 0.01/~ and B= 124 ° 53' + 10'. The final 
value of R=2~]IFol- IFcll/,rlFol is 0-12 for 1378 reflections. 

Several new crystallographic approaches to the determination of molecular structures employing 
anomalous scattering are proposed. 

Vinca rosea Linn. of the family Apocynaceae, better 
known as Madagascar periwinkle, grows throughout 
the world, and has been known for centuries in the 
folk medicine of both civilized and uncivilized cultures 
as a cure or preventive for many assorted ailments 
(d'S6vign6, 1684;:~ Peckolt, 1910; Watt  & Breyer- 
Brandwijk, 1962; Garcia, 1954; Johnson, Wright, Svo- 
boda & Vlantis, 1960; Johnson, Armstrong, Gorman 
& Burnett, 1963; Schlittler, 1964). Its reputed activity 
in the treatment of diabetes prompted two groups in 
1949 to begin systematic studies. However, both groups, 
one at the Eli Lilly Research Laboratories in Indiana- 
polls, including Svoboda, Johnson, Neuss & Gorman, 
and the other at the Collip Laboratories of the Univer- 
sity of Western Ontario) includin~ Noble) Beer and 

Cutts, failed to observe any effect on the blood sugar 
content when laboratory animals were treated with 

* A.M.A. approved generic names are Vincristine (VCR) 
for leurocristine and Vinblastine (VLB) for vincaleukoblastine. 
VLB is supplied as Velban ® and VCR as Oncovin ® (Lilly). 

t Present address: Department of Chemistry, Amherst 
College, Amherst, Massachusetts 01002, U.S.A. 

:l: ' . . .  gu6rissez-vous avec votre bonne pervenche, bien 
verte, bien am~re, mais bien sp6cifique fi vos maux, et dont 
vous avez senti de grands effets: refraichissez-en cette poitrine 
enflammes; . . . '  from a letter from Mme d'S6vign6 to Mme 
de Grignan, Nov. 5, 1684. 

extracts of this periwinkle. However, both groups noted 
the development of acute leukopenia when extracts of 
the leaf were administered, and finally in 1958 Beer 
succeeded in isolating a crystalline alkaloid, christened 
vincaleukoblastine, which produced severe leukopenia 
(Noble, Beer & Cutts, 1958). Since that time some 
sixty different alkaloids have been isolated from Vinca 
rosea Linn. Twenty of these have consisted of two alka- 
loids joined chemically, and four of these twenty exhibit 
antitumor activity. Clinical tests on (Svoboda, 1964) 
two of these four, vincaleukoblastine (VLB) and leuro- 
cristine (LCR) have proved activity against a large 
number of human tumors, and LCR has shown some 
effectiveness in the treatment of leukemia (Johnson, 
Wright, Svoboda & glantis, 1960), The effectiveness 
in many cases is restricted by the limit imposed on 
dosages by toxic side effects: chiefly acute leukopenia 
(Gorman, Neuss, Svoboda, Barnes & Cone, 1959; Frei, 
Franzino, Shnider, Costa, Colsky, Brindley, Halsey, 
Holland, Gold & Jonsson, 1961) when VLB is used, and 
neuromuscular abnormalities (but little or no leuko- 
penia) when LCR is administered (Armstrong, Dyke, 
Fouts & Gahimer, 1961). 

The molecular structures of these chemically joined 
alkaloids, especially of LCR and VLB, have been stud- 
ied by several methods. Vindoline, which can be isolated 


